문제 출처 : 넥슨입사문제 ※ 문제 어떤 자연수 n이 있을 때, d(n)을 n의 각 자릿수 숫자들과 n 자신을 더한 숫자라고 정의하자. 예를 들어 d(91) = 9 + 1 + 91 = 101 이 때, n을 d(n)의 제네레이터(generator)라고 한다. 위의 예에서 91은 101의 제네레이터이다. 어떤 숫자들은 하나 이상의 제네레이터를 가지고 있는데, 101의 제네레이터는 91 뿐 아니라 100도 있다. 그런데 반대로, 제네레이터가 없는 숫자들도 있으며, 이런 숫자를 인도의 수학자 Kaprekar가 셀프 넘버(self-number)라 이름 붙였다. 예를 들어 1,3,5,7,9,20,31 은 셀프 넘버 들이다. 1 이상이고 5000 보다 작은 모든 셀프 넘버들의 합을 구하라. ※ 풀이 위의 문제를 풀기..
알고리즘&코딩테스트/코딩테스트
문제 출처 : https://programmers.co.kr ※ 문제 직사각형을 만드는 데 필요한 4개의 점 중 3개의 좌표가 주어질 때, 나머지 한 점의 좌표를 구하려고 합니다. 점 3개의 좌표가 들어있는 배열 v가 매개변수로 주어질 때, 직사각형을 만드는 데 필요한 나머지 한 점의 좌표를 return 하도록 solution 함수를 완성해주세요. 단, 직사각형의 각 변은 x축, y축에 평행하며, 반드시 직사각형을 만들 수 있는 경우만 입력으로 주어집니다. 제한사항v는 세 점의 좌표가 들어있는 2차원 배열입니다.v의 각 원소는 점의 좌표를 나타내며, 좌표는 [x축 좌표, y축 좌표] 순으로 주어집니다.좌표값은 1 이상 10억 이하의 자연수입니다.직사각형을 만드는 데 필요한 나머지 한 점의 좌표를 [x축 ..